N
N BLOCKSEC

Report for Puffer
Locker

Date: June 3, 2025 Version: 1.0
Contact: contact@blocksec.com


mailto:contact@blocksec.com

Contents

Chapter 1 Introduction
1.1 About TargetContracts . . . . . . .. . . . . . i e e e
1.2 DisClaimer . . . . . e e e e e e e e e e
1.3 Procedure of Auditing . . . . . . . . . e e e

1.3.1 Security ISSUES . . . . . o o i e e e e e
1.3.2 Additional Recommendation . ... ... ... ... ... ... . . oo,
1.3.3 NOte . . . . e e e e e e e e e e
1.4 Security Model

Chapter 2 Findings
2.1 Additional Recommendation . . . . ... ... ... .. ... ..
2.1.1 Incorrect comment on VIPUFFER mintinglogic . .. ... ... ........
2.1.2 Lack of check in function kickUsers() . . ... ... ... .. ... ... ...



Report Manifest

Item Description
Client Puffer Finance
Target Puffer Locker

Version History

Version Date Description
1.0 June 3, 2025 First release
Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,

Twitter and Medium.



https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information | Description

Type Smart Contract

Language | Solidity

Approach | Semi-automatic and manual verification

The target of this audit is the code repository 1 of Puffer Locker of Puffer Finance. This
contract is solely intended for protocol governance. Users can deposit a certain amount of
PUFFER tokens and lock them for a specified period, during which the contract mints a corre-
sponding amount of non-transferable v1PUFFER. Holding v1PUFFER grants users voting rights
and participation in protocol governance. Once the lock period expires, users can burn their
v1PUFFER to reclaim their original PUFFER tokens. Note this audit only focuses on the smart
contracts in the following directories/files:

o src/vIPUFFER.sol

The auditing process is iterative. Specifically, we would audit the commits that fix the
discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for the
code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report.

Other files are not within the scope of this audit. Additionally, all dependencies of the
smart contracts within the audit scope are considered reliable in terms of both functionality
and security, and are therefore not included in the audit scope.

Project Version Commit Hash

Version 1 c64d833c0e3fe7878f6aee2b7ecO0f53fdcOb9ade
Puffer Locker

Version 2 £9d66be7549d2c498dcd920£015e4f52eal8e8dd

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does

https://github.com/PufferFinance/puffer-locker/blob/dev/src/v1PUFFER. sol


https://github.com/PufferFinance/puffer-locker/blob/dev/src/vlPUFFER.sol

N sLoCcHSEC

not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits

and

a public bug bounty program to ensure the security of smart contracts.
The scope of this audit is limited to the code mentioned in Section 1.1. Unless explic-

itly specified, the security of the language itself (e.g., the solidity language), the underlying

com

piling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

1.3

*

1.3

*

*

We perform the audit according to the following procedure.
Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.
Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We also manually analyze possible attack scenarios with independent
auditors to cross-check the result.
Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

.1 Security Issues

Access control

Permission management

Whitelist and blacklist mechanisms
Initialization consistency

Improper use of proxy system
Reentrancy

Denial of Service (DoS)

Untrusted external calls and control flow
Exception handling

Data handling and flow

Events operations

Error-prone randomness

Oracle security

Business logic correctness

Semantic and functional consistency
Emergency mechanisms

Economic and incentive impact

.2 Additional Recommendation

Gas efficiency
Code quality and style



4

N sLoCcHSEC

x Redundant logic and code
«x Parameter validations
+x Documentation and comments

1.3.3 Note

x Centralization risks

x Off -chain dependencies

x Threat modeling

x Protocol-specific assumptions

The listed checkpoints cover the primary focus areas. Additional checks may be applied
depending on the project’s design. The audit emphasizes identifying security vulnerabilities
rather than verifying standard functionality. When specifications are clear, we assume func-
tional correctness and concentrate on uncovering potential security issues.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology ? and Common Weak -
ness Enumeration 3. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

- High Medium

Q

@

o

=

- Low Medium Low
High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following five cate-
gories:

2https://owasp.org/www - community/OWASP_Risk_Rating_Methodology
Shttps://cwe.mitre.org/


https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

N sLoCcHSEC

Undetermined No response yet.

Acknowledged The item has been received by the client, but not confirmed yet.
Confirmed The item has been recognized by the client, but not fixed yet.
Partially Fixed The item has been confirmed and partially fixed by the client.
Fixed The item has been confirmed and fixed by the client.



Chapter 2 Findings

In total, we have two recommendations.
- Recommendation: 2

ID | Severity | Description Category Status
1 B {gg?crrect comment on VIPUFFER minting Recommendation| Fixed
2 - Lack of check in function kickUsers () Recommendation| Confirmed

The details are provided in the following sections.

2.1 Additional Recommendation

2.1.1 Incorrect comment on VIPUFFER minting logic

Status Fixed in Version 2
Introduced by Version 1

Description Users caninvoke the createLock () function to deposit PUFFER tokens in exchange
for v1PUFFER, calculated as amount * multiplier, where multiplier represents the number of
months the tokens will be locked. However, a comment in the code suggests that locking 100
PUFFER for 2 years yields 24,000 v1PUFFER, which is incorrect based on the actual logic (100
PUFFER * 24 months = 2,400 v1PUFFER). This inconsistency between the comment and the
implementation may confuse developers or integrators reviewing the code.

66 // If a user locks 100 PUFFER tokens for 2 years, they will get 24000 v1PUFFER

Listing 2.1: vIPUFFER.sol

138 function createLock(uint256 amount, uint256 multiplier) external {
139 _createLock(amount, multiplier);
140 }

Listing 2.2: vIPUFFER.sol

167 function _createLock(uint256 amount, uint256 multiplier) internal onlyValidMultiplier(
multiplier) whenNotPaused {

168 require (amount >= _MIN_LOCK_AMOUNT, InvalidAmount());

169 require(lockInfos[msg.sender] .pufferAmount == 0, LockAlreadyExists());
170

171

172 // Transfer PUFFER tokens to this contract using SafeERC20
173 PUFFER.safeTransferFrom(msg.sender, address(this), amount);
174

175

176 uint256 unlockTime = _calculateUnlockTime(multiplier);

177 uint256 v1PUFFERAmount = amount * multiplier;

178

179




N sLoCcHSEC

180 uint256 supplyBefore = totalSupply();

181

182

183 // Mint the v1PUFFER (non transferable)

184 _mint (msg.sender, v1PUFFERAmount);

185

186

187 // Update the lock information

188 lockInfos[msg.sender] = LockInfo({ pufferAmount: amount, unlockTime: unlockTime });

189

190

191 // delegate the voting power to themselves

192 _delegate(msg.sender, msg.sender);

193

194

195 emit Deposit({ user: msg.sender, pufferAmount: amount, unlockTime: unlockTime,
v1PUFFERAmount: v1PUFFERAmount });

196 emit Supply({ previousSupply: supplyBefore, currentSupply: totalSupply() 1});

197 }

Listing 2.3: vIPUFFER.sol

Suggestion Revise the comment to ensure it accurately reflects the implemented logic and

remains consistent with the code.

2.1.2 Lack of check in function kickUsers ()

Status Confirmed

Introduced by Version 1

Description The kickUsers() function allows any caller to remove users who have failed to
withdraw their PUFFER tokens after the grace period, transferring their tokens and awarding a
1% fee to the kicker. However, the function does not prevent users from including their own
address in the kick list. Since self-kicking yields the same result as invoking withdraw(), this

operation is redundant and serves no purpose.

293 continue;

278

279 /xx

280 * Onotice Kick multiple users and receive 17, of their PUFFER tokens as a reward
281 * Qparam users Array of user addresses to kick

282 */

283 function kickUsers(address[] calldata users) external {
284 uint256 totalKickerFee;

285

286

287 for (uint256 i = 0; i < users.length; ++i) {

288 address user = users[i];

289 LockInfo memory lockInfo = lockInfos[user];

290

291

292 if (lockInfo.pufferAmount ==




N sLoCcHSEC

294
295
296
297
298
299
300
301
302
303
304
305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324
325
326
327
328
329
330
331

// The user has a grace period to withdraw their tokens
require(lockInfo.unlockTime + _GRACE_PERIOD < block.timestamp, TokensMustBeUnlocked());

uint256 vl1PUFFERAmount = balanceOf (user);

// 1% of the PUFFER tokens are sent to the kicker
uint256 kickerFee = (1ockInfo.pufferAmount * _KICKER_FEE_BPS) / _KICKER_FEE_DENOMINATOR

>

totalKickerFee += kickerFee;

// The rest of the PUFFER tokens are sent to the user
uint256 pufferAmount = lockInfo.pufferAmount;

delete lockInfos[user];

_burn(user, vl1PUFFERAmount) ;

// Send the rest of the PUFFER tokens to the user
PUFFER.safeTransfer (user, pufferAmount - kickerFee);

emit UserKicked({ kicker: msg.sender, user: user, v1PUFFERAmount: v1PUFFERAmount,

kickerFee: kickerFee 1});

// Send all kicker fees in a single transfer
if (totalKickerFee > 0) {
PUFFER.safeTransfer (msg.sender, totalKickerFee);

Listing 2.4: vIPUFFER.sol

Suggestion Add a check to prevent users from kicking themselves.

Feedback from the project Users can invoke kickUsers () from a different address, therefore
adding such a check would be meaningless.







	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Security Issues
	1.3.2 Additional Recommendation
	1.3.3 Note

	1.4 Security Model

	2 Findings
	2.1 Additional Recommendation
	2.1.1 Incorrect comment on vlPUFFER minting logic
	2.1.2 Lack of check in function kickUsers()



