
Report for Puffer
Locker

Date: June 3, 2025 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Security Issues . 2
1.3.2 Additional Recommendation . 2
1.3.3 Note . 3

1.4 Security Model . 3

Chapter 2 Findings 5
2.1 Additional Recommendation . 5

2.1.1 Incorrect comment on vlPUFFER minting logic 5
2.1.2 Lack of check in function kickUsers() . 6

Report Manifest

Item Description
Client Puffer Finance
Target Puffer Locker

Version History

Version Date Description
1.0 June 3, 2025 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repository 1 of Puffer Locker of Puffer Finance. This
contract is solely intended for protocol governance. Users can deposit a certain amount of
PUFFER tokens and lock them for a specified period, during which the contract mints a corre-
sponding amount of non-transferable vlPUFFER. Holding vlPUFFER grants users voting rights
and participation in protocol governance. Once the lock period expires, users can burn their
vlPUFFER to reclaim their original PUFFER tokens. Note this audit only focuses on the smart
contracts in the following directories/files:

src/vlPUFFER.sol
The auditing process is iterative. Specifically, we would audit the commits that fix the

discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for the
code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report.

Other files are not within the scope of this audit. Additionally, all dependencies of the
smart contracts within the audit scope are considered reliable in terms of both functionality
and security, and are therefore not included in the audit scope.

Project Version Commit Hash

Puffer Locker Version 1 c64d833c0e3fe7878f6aee2b7ec0f53fdc0b9a4e
Version 2 f9d66be7549d2c498dcd920f015e4f52ea18e8dd

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does

1https://github.com/PufferFinance/puffer-locker/blob/dev/src/vlPUFFER.sol

https://github.com/PufferFinance/puffer-locker/blob/dev/src/vlPUFFER.sol

not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explic-
itly specified, the security of the language itself (e.g., the solidity language), the underlying
compiling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Security Issues

∗ Access control
∗ Permission management
∗ Whitelist and blacklist mechanisms
∗ Initialization consistency
∗ Improper use of proxy system
∗ Reentrancy
∗ Denial of Service (DoS)
∗ Untrusted external calls and control flow
∗ Exception handling
∗ Data handling and flow
∗ Events operations
∗ Error-prone randomness
∗ Oracle security
∗ Business logic correctness
∗ Semantic and functional consistency
∗ Emergency mechanisms
∗ Economic and incentive impact

1.3.2 Additional Recommendation

∗ Gas efficiency
∗ Code quality and style

2

∗ Redundant logic and code
∗ Parameter validations
∗ Documentation and comments

1.3.3 Note

∗ Centralization risks
∗ Off-chain dependencies
∗ Threat modeling
∗ Protocol-specific assumptions

�

Note The listed checkpoints cover the primary focus areas. Additional checks may be applied
depending on the project’s design. The audit emphasizes identifying security vulnerabilities
rather than verifying standard functionality. When specifications are clear, we assume func-
tional correctness and concentrate on uncovering potential security issues.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 2 and CommonWeak-
ness Enumeration 3. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following five cate-
gories:

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Partially Fixed The item has been confirmed and partially fixed by the client.
- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we have two recommendations.
- Recommendation: 2

ID Severity Description Category Status

1 - Incorrect comment on vlPUFFER minting
logic Recommendation Fixed

2 - Lack of check in function kickUsers() Recommendation Confirmed

The details are provided in the following sections.

2.1 Additional Recommendation

2.1.1 Incorrect comment on vlPUFFER minting logic

Status Fixed in Version 2

Introduced by Version 1

Description Users can invoke the createLock() function to deposit PUFFER tokens in exchange
for vlPUFFER, calculated as amount * multiplier, where multiplier represents the number of
months the tokens will be locked. However, a comment in the code suggests that locking 100
PUFFER for 2 years yields 24,000 vlPUFFER, which is incorrect based on the actual logic (100
PUFFER * 24 months = 2,400 vlPUFFER). This inconsistency between the comment and the
implementation may confuse developers or integrators reviewing the code.
66 // If a user locks 100 PUFFER tokens for 2 years, they will get 24000 vlPUFFER

Listing 2.1: vlPUFFER.sol

138 function createLock(uint256 amount, uint256 multiplier) external {
139 _createLock(amount, multiplier);
140 }

Listing 2.2: vlPUFFER.sol

167 function _createLock(uint256 amount, uint256 multiplier) internal onlyValidMultiplier(
multiplier) whenNotPaused {

168 require(amount >= _MIN_LOCK_AMOUNT, InvalidAmount());
169 require(lockInfos[msg.sender].pufferAmount == 0, LockAlreadyExists());
170
171
172 // Transfer PUFFER tokens to this contract using SafeERC20
173 PUFFER.safeTransferFrom(msg.sender, address(this), amount);
174
175
176 uint256 unlockTime = _calculateUnlockTime(multiplier);
177 uint256 vlPUFFERAmount = amount * multiplier;
178
179

180 uint256 supplyBefore = totalSupply();
181
182
183 // Mint the vlPUFFER (non transferable)
184 _mint(msg.sender, vlPUFFERAmount);
185
186
187 // Update the lock information
188 lockInfos[msg.sender] = LockInfo({ pufferAmount: amount, unlockTime: unlockTime });
189
190
191 // delegate the voting power to themselves
192 _delegate(msg.sender, msg.sender);
193
194
195 emit Deposit({ user: msg.sender, pufferAmount: amount, unlockTime: unlockTime,

vlPUFFERAmount: vlPUFFERAmount });
196 emit Supply({ previousSupply: supplyBefore, currentSupply: totalSupply() });
197 }

Listing 2.3: vlPUFFER.sol

Suggestion Revise the comment to ensure it accurately reflects the implemented logic and
remains consistent with the code.

2.1.2 Lack of check in function kickUsers()

Status Confirmed
Introduced by Version 1

Description The kickUsers() function allows any caller to remove users who have failed to
withdraw their PUFFER tokens after the grace period, transferring their tokens and awarding a
1% fee to the kicker. However, the function does not prevent users from including their own
address in the kick list. Since self-kicking yields the same result as invoking withdraw(), this
operation is redundant and serves no purpose.
278
279 /**
280 * @notice Kick multiple users and receive 1% of their PUFFER tokens as a reward
281 * @param users Array of user addresses to kick
282 */
283 function kickUsers(address[] calldata users) external {
284 uint256 totalKickerFee;
285
286
287 for (uint256 i = 0; i < users.length; ++i) {
288 address user = users[i];
289 LockInfo memory lockInfo = lockInfos[user];
290
291
292 if (lockInfo.pufferAmount == 0) {
293 continue;

6

294 }
295
296
297 // The user has a grace period to withdraw their tokens
298 require(lockInfo.unlockTime + _GRACE_PERIOD < block.timestamp, TokensMustBeUnlocked());
299
300
301 uint256 vlPUFFERAmount = balanceOf(user);
302
303
304 // 1% of the PUFFER tokens are sent to the kicker
305 uint256 kickerFee = (lockInfo.pufferAmount * _KICKER_FEE_BPS) / _KICKER_FEE_DENOMINATOR

;
306 totalKickerFee += kickerFee;
307
308
309 // The rest of the PUFFER tokens are sent to the user
310 uint256 pufferAmount = lockInfo.pufferAmount;
311
312
313 delete lockInfos[user];
314
315
316 _burn(user, vlPUFFERAmount);
317
318
319 // Send the rest of the PUFFER tokens to the user
320 PUFFER.safeTransfer(user, pufferAmount - kickerFee);
321
322
323 emit UserKicked({ kicker: msg.sender, user: user, vlPUFFERAmount: vlPUFFERAmount,

kickerFee: kickerFee });
324 }
325
326
327 // Send all kicker fees in a single transfer
328 if (totalKickerFee > 0) {
329 PUFFER.safeTransfer(msg.sender, totalKickerFee);
330 }
331 }

Listing 2.4: vlPUFFER.sol

Suggestion Add a check to prevent users from kicking themselves.
Feedback from the project Users can invoke kickUsers() from a different address, therefore
adding such a check would be meaningless.

7

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Security Issues
	1.3.2 Additional Recommendation
	1.3.3 Note

	1.4 Security Model

	2 Findings
	2.1 Additional Recommendation
	2.1.1 Incorrect comment on vlPUFFER minting logic
	2.1.2 Lack of check in function kickUsers()

