
Report for Puffer
Institutional Contracts

Date:March 19, 2025 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 2
1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

Chapter 2 Findings 4
2.1 Additional Recommendation . 4

2.1.1 Check the shareTokenName and shareTokenSymbol variables 4
2.1.2 Unused immutable value in the factory contract 5
2.1.3 Check the length of the array variables of the completeQueuedWithdrawals()

function . 5
2.2 Note . 6

2.2.1 Design of deposits, withdrawals, and transfers functionality 6
2.2.2 Potential centralization risk . 6
2.2.3 Trusted parties that own the validator keys 6
2.2.4 Access control is aligned with function annotations 7
2.2.5 The implementation variable in createVault() function 7
2.2.6 The update of variables nonRestakedValidatorsETH and restakedValidatorsETH

. 8

Report Manifest

Item Description
Client Puffer
Target Puffer Institutional Contracts

Version History

Version Date Description
1.0 March 19, 2025 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repository of Puffer Institutional Contracts1 of Puffer.
Note that we only focus on the contracts in the src/ folder, and other contracts and source
code files in the repository are out of scope for this audit. The auditing process is iterative.
Specifically, we will audit the commits that fix the discovered issues. If there are new issues,
we will continue this process.

Project Version Commit Hash

Puffer Institutional Contracts Version 1 7ed9c69c82db0374418afb1f04e5402f45d23462
Version 2 cceb9737839011b4f6c0e4d2c31bbd37413e6d83

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explic-
itly specified, the security of the language itself (e.g., the solidity language), the underlying
compiling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

1https://github.com/PufferFinance/puffer-institutional

https://github.com/PufferFinance/puffer-institutional

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

2

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 2 and CommonWeak-
ness Enumeration 3. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we have three recommendations and six notes.
- Recommendation: 3
- Note: 6

ID Severity Description Category Status

1 - Check the shareTokenName and
shareTokenSymbol variables Recommendation Confirmed

2 - Unused immutable value in the factory
contract Recommendation Fixed

3 -
Check the length of the array variables of
the completeQueuedWithdrawals() func-
tion

Recommendation Confirmed

4 - Design of deposits, withdrawals, and
transfers functionality Note -

5 - Potential centralization risk Note -

6 - Trusted parties that own the validator
keys Note -

7 - Access control is aligned with function
annotations Note -

8 - The implementation variable in
createVault() function Note -

9 -
The update of variables
nonRestakedValidatorsETH and
restakedValidatorsETH

Note -

The details are provided in the following sections.

2.1 Additional Recommendation

2.1.1 Check the shareTokenName and shareTokenSymbol variables

Status Confirmed
Introduced by Version 1

Description The createVault() function receives the variable shareTokenName and shareToken-
Symbol to create different vaults. However, if the values of shareTokenName and shareTokenSymbol
are the same each time of creating a new vault, different vaults will have the same tokenName
and tokenSymbol, which may result in potential confusions to users.
52 function createVault(
53 address admin,
54 address implementation,
55 bytes32 salt,
56 string calldata shareTokenName,
57 string calldata shareTokenSymbol
58) external onlyPufferMultisig returns (address, address) {
59 require(admin != address(0), ZeroAddress());

60 require(implementation != address(0), ZeroAddress());
61
62 AccessManager accessManager = new AccessManager(admin);
63
64 address vault = address(
65 Create2.deploy({
66 amount: 0,
67 salt: salt,
68 bytecode: abi.encodePacked(
69 type(ERC1967Proxy).creationCode,
70 abi.encode(
71 implementation,
72 abi.encodeCall(
73 InstitutionalVault.initialize, (address(accessManager), shareTokenName,

shareTokenSymbol)
74)
75)
76)
77 })
78);
79
80 vaults.push(vault);
81
82 emit VaultCreated(vault, address(accessManager), salt);
83
84 return (address(accessManager), vault);
85 }

Listing 2.1: InstitutionalFactory.sol

Suggestion Make sure each vault has a different tokenName and tokenSymbol.
Feedback from the Project This check would introduce unnecessary code complexity.

2.1.2 Unused immutable value in the factory contract

Status Fixed in Version 2

Introduced by Version 1

Description The immutable valueWETH is not used in the contract, which should be removed.
18 IERC20 public immutable WETH;

Listing 2.2: InstitutionalFactory.sol

Suggestion Remove the unused variable.

2.1.3 Check the length of the array variables of the completeQueuedWithdrawals()
function

Status Confirmed
Introduced by Version 1

5

Description In the completeQueuedWithdrawals() function, the length of the tokens array is
1. If the lengths of the withdrawals and receiveAsTokens parameters are not equal to 1, the
transaction will be reverted.
315 function completeQueuedWithdrawals(
316 IDelegationManagerTypes.Withdrawal[] calldata withdrawals,
317 bool[] calldata receiveAsTokens
318) external virtual restricted {
319 IERC20[][] memory tokens = new IERC20[][](1);
320 tokens[0] = new IERC20[](1);
321 tokens[0][0] = IERC20(address(0));
322
323 EIGEN_DELEGATION_MANAGER.completeQueuedWithdrawals({
324 withdrawals: withdrawals,
325 tokens: tokens,
326 receiveAsTokens: receiveAsTokens
327 });
328 }

Listing 2.3: InstitutionalVault.sol

Suggestion Check the length of the two arrays of parameters withdrawals and receiveAsTokens,
and make sure the length is equal to 1.

2.2 Note

2.2.1 Design of deposits, withdrawals, and transfers functionality

Introduced by Version 1

Description Currently, all the deposits and withdrawals are permissioned and controlled by
the institution. Meanwhile, the share tokens are non-transferable. Thus, the vulnerabilities
(e.g., inflation attack, donation attack) in ERC-4626 are not applicable in this contract.

2.2.2 Potential centralization risk

Introduced by Version 1

Description Several protocol roles could conduct privileged operations, which introduces
potential centralization risks. If the private keys of the privileged accounts are lost or mali-
ciously exploited, it could pose a significant risk to the protocol.

2.2.3 Trusted parties that own the validator keys

Introduced by Version 1

Description There is a public known issue that a malicious party could front-run a staker’s
deposit call to the Beacon chain deposit contract by depositing 1 ETH into the Beacon chain
deposit contract with a specified party-controlled withdrawal credentials.

In this case, Puffer Institutional Vault’s deposit transaction would be successfully pro-
cessed but the withdrawal credentials provided by the malicious party will not be overwritten.

6

https://ethresear.ch/t/deposit-contract-exploit/6528

The end state is a validator managing 1 ETH of the party’s funds and 32 ETH of Puffer Institu-
tional users’ funds, fully controlled and withdrawable by the party. Thus, the parties that own
the validator keys in the Puffer Institutional Vault must be trusted.

2.2.4 Access control is aligned with function annotations

Introduced by Version 1

Description The audited contracts, utilizes OpenZepplin’s AccessManagedUpgradeable library
to manage access controls. During this audit, we assume that the access control is aligned
with function annotations.

2.2.5 The implementation variable in createVault() function

Introduced by Version 1

Description The createVault() function currently receives the implementation variable to
create the vault. This implementation variable may not always be the audited contract (i.e.,
InstitutionalVault) in this report. In the future, the project may use a upgraded implementa-
tion logic contract to create new Institutional Vault.
52 function createVault(
53 address admin,
54 address implementation,
55 bytes32 salt,
56 string calldata shareTokenName,
57 string calldata shareTokenSymbol
58) external onlyPufferMultisig returns (address, address) {
59 require(admin != address(0), ZeroAddress());
60 require(implementation != address(0), ZeroAddress());
61
62 AccessManager accessManager = new AccessManager(admin);
63
64 address vault = address(
65 Create2.deploy({
66 amount: 0,
67 salt: salt,
68 bytecode: abi.encodePacked(
69 type(ERC1967Proxy).creationCode,
70 abi.encode(
71 implementation,
72 abi.encodeCall(
73 InstitutionalVault.initialize, (address(accessManager), shareTokenName,

shareTokenSymbol)
74)
75)
76)
77 })
78);
79
80 vaults.push(vault);
81

7

82 emit VaultCreated(vault, address(accessManager), salt);
83
84 return (address(accessManager), vault);
85 }

Listing 2.4: InstitutionalFactory.sol

2.2.6 The update of variables nonRestakedValidatorsETH and
restakedValidatorsETH

Introduced by Version 1

Description The two variables _getVaultStorage().restakedValidatorsETH and _getVault-
Storage().nonRestakedValidatorsETH can influence the calculation of share values. These two
variables are not updatedwithin the completeQueuedWithdrawals() function andwill be updated
manually with function setValidatorsETH(). Thus, the share values may not be precise. The
project promises to address the exchange rate accuracy (precision of the share values) when
the logic and design of the protocol is updated.
235 function startRestakingValidators(
236 bytes[] calldata pubKeys,
237 bytes[] calldata signatures,
238 bytes32[] calldata depositDataRoots
239) external virtual restricted {
240 require(pubKeys.length == signatures.length && pubKeys.length == depositDataRoots.length,

InvalidInput());
241
242 _unwrapWETH(32 ether * pubKeys.length);
243
244 for (uint256 i = 0; i < pubKeys.length; i++) {
245 EIGEN_POD_MANAGER.stake{ value: 32 ether }(pubKeys[i], signatures[i], depositDataRoots[

i]);
246 emit StartedRestakingValidator(pubKeys[i], depositDataRoots[i]);
247 }
248
249 _getVaultStorage().restakedValidatorsETH += uint128(pubKeys.length * 32 ether);
250
251 emit RestakedValidatorsETHUpdated(_getVaultStorage().restakedValidatorsETH);
252 }

Listing 2.5: InstitutionalVault.sol

260 function startNonRestakingValidators(
261 bytes[] calldata pubKeys,
262 bytes[] calldata signatures,
263 bytes32[] calldata depositDataRoots
264) external virtual restricted {
265 require(pubKeys.length == signatures.length && pubKeys.length == depositDataRoots.length,

InvalidInput());
266
267 bytes memory withdrawalCredentials = getWithdrawalCredentials();
268

8

269 _unwrapWETH(32 ether * pubKeys.length);
270
271 for (uint256 i = 0; i < pubKeys.length; i++) {
272 BEACON_DEPOSIT_CONTRACT.deposit{ value: 32 ether }(
273 pubKeys[i], withdrawalCredentials, signatures[i], depositDataRoots[i]
274);
275 emit StartedNonRestakingValidator(pubKeys[i], depositDataRoots[i]);
276 }
277
278 _getVaultStorage().nonRestakedValidatorsETH += uint128(pubKeys.length * 32 ether);
279
280 emit NonRestakedValidatorsETHUpdated(_getVaultStorage().nonRestakedValidatorsETH);
281 }

Listing 2.6: InstitutionalVault.sol

359 function setValidatorsETH(uint128 restakedValidatorsETH, uint128 nonRestakedValidatorsETH)
360 external
361 virtual
362 restricted
363 {
364 Storage storage $ = _getVaultStorage();
365 $.restakedValidatorsETH = restakedValidatorsETH;
366 $.nonRestakedValidatorsETH = nonRestakedValidatorsETH;
367 emit RestakedValidatorsETHUpdated(restakedValidatorsETH);
368 emit NonRestakedValidatorsETHUpdated(nonRestakedValidatorsETH);
369 }

Listing 2.7: InstitutionalVault.sol

9

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Additional Recommendation
	2.1.1 Check the shareTokenName and shareTokenSymbol variables
	2.1.2 Unused immutable value in the factory contract
	2.1.3 Check the length of the array variables of the completeQueuedWithdrawals() function

	2.2 Note
	2.2.1 Design of deposits, withdrawals, and transfers functionality
	2.2.2 Potential centralization risk
	2.2.3 Trusted parties that own the validator keys
	2.2.4 Access control is aligned with function annotations
	2.2.5 The implementation variable in createVault() function
	2.2.6 The update of variables nonRestakedValidatorsETH and restakedValidatorsETH

		2025-03-19T15:23:03+0800

